Next Generation Space Internet: Standards and Implementation

http://www.aist-ngsi.org

NASA Earth Science Technology Conference June 26, 2003

Keith Scott
The MITRE Corporation
(703) 883-6547
kscott@mitre.org

AGENDA

- Future mission requirements & assumptions
- NGSI services
- Standardization
- Implementation

Future Mission Requirements

Challenges

Connectivity

 Point of attachment between orbiting sensor net and the Internet changes

Security

Your spacecraft is at 66.170.238.241? I always wanted my own spacecraft...

• Efficiency

 Large data sets require efficiency, especially across the space-to-ground link

Approach

- Standardized protocols / extensions allowing multiple vendor implementations:
 - Security gateways
 - Advanced IP Mobility
 - Resource Reservation

Proof-of-concept implementation

NGSI Protocol Extensions

NGSI Architecture

Intserv (RSVP) prevents congestion-based loss MobileIP allows Internet-based users to contact spacecraft Security gateways translate between IPSEC and SCPS-SP

IPSEC / SCPS-SP Security Gateways

- SCPS-SP has lower overhead than IPSEC
- Trusted gateways allow logging, monitoring, policing, PEPs
- Standardized IKE options for efficient key exchange

Standard MobileIP (No NGSI

MobileIP with NGSI Extensions

- Standardized MobileIP extensions for scheduled operations
 - Mobile router uses IP-in-IP tunnel and MobileIP signaling across the space link

Protocol Overhead

Data Delivery

Mobile Router

- Really designed for 'one-hop' mobile
 - Each mobile router supports a fixed mobile subnet
- Carries IP tunnel across the mobile channel

NGSI and Cisco Mobile Router Approaches

	4	
rea		
-		

Mobile – FA Signaling (Across the space-to-ground link)

Per-packet overhead

Operation in multi-hop constellation environment

Cisco Mobile Router

Yes – Router Solicitation / Advertisement / Mobile Registration

IP-in-IP encapsulation (20 bytes)

Difficult for dynamic and multi-hop constellations

NGSI

No – MobileIP tunnel configured ahead of time

None

Yes

RSVP

- Protects data from congestion-based loss, provides some class of service (CoS)
- Applications signal data requirements to the network
- Network responds (yes/no)
 - If yes, network provisions the path → prevents congestion loss
- Standardized RSVP extensions for protocol translating gateways

Standardization

- Few missions currently requesting IP services
- Standardizing NGSI services in CCSDS 'experimental' track
 - Feedback from space agencies and interested parties
 - Can be quickly converted to standards track when appropriate

Prototype Implementation

Standards-Based Approach to IP in Space

- Runs over any link layer(s) that support IP; tested with CCSDS telemetry / telecommand
- Open international standards:
 - Can be implemented by any vendor
 - Allow international cross-support for missions
- SCPS + NGSI Maximize Data Return
 - High-efficiency network, security, and transport
 End-to-end or via gateways
 - Low-overhead mobility support for spacecraft
 - Resource reservation to prevent congestion loss

Questions

6/30/2003